Weitere Veranstaltungen in Innsbruck

Exploring Gender Constructs and Human Perception: Insights from Advertising and Human-Machine Interaction

Veranstaltung findet im Untergeschoss statt / event takes place in the basement
Vergangene Veranstaltung - 2024
Mo 13 Mai Einlass 18.30 Uhr
Event 19.00 - 21.00 Uhr
Cool Run Inn, Schöpfstraße 14,
6020 Innsbruck
This evening consists of two talks about present topics that influence our society. Not only will you get insights into the different ways that social media influences us and our behaviour, but also how it constructs gender stereotypes. Moreover, it reveals how the internet influences the perception of ourselves and others and combines it with aspects of machine-learning. The first talk will be in English, whereas the second one will be in German.

“Tall, Dark and Tasty”: Gender in Advertising

Dr. Anna Islentyeva (Postdoctoral Researcher and Lecturer at the Department of English, Uni Innsbruck)
Advertising is one of the most omnipresent, powerful and persuasive types of discourse, which has potential to shape our beliefs and influence our behavior. Along with mass and social media, promotional culture is one of the most powerful sources that constructs gender. This talk will provide insight into the complex relationship between language, visuals, marketing strategies and gender stereotypes in a sample of print advertisements launched between 2000 and 2022. Among the brands advertised are American Apparel, Calvin Klein, Coca-Cola, Dove, Givenchy, Nivea and McDonald’s.

Warum wir Menschen sehen, wo gar keine sind

Dr. Roland Schroll (Assistant Professor at the Department of Strategic Management, Marketing and Tourism, Uni Innsbruck)
Was können uns Kekse über das Mensch-Sein lehren? Was können uns Lampen über Emotionen beibringen? Und wie können uns Maschinen dabei helfen, bessere Menschen zu sein? Wir alle sehen Menschen, wo gar keine sind. Dieser Vortrag geht darauf ein, warum wir das machen und welche Folgen das für uns und unsere Umgebung hat.
© die Mitwirkenden OpenStreetMap